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1 INTRODUCTION

The classic ring structure of a number of identical achro-
mat cells arranged in a highly symmetric circular form
has been used in the vast majority of synchrotron light
sources. However, lattices with small electron emittances
require smaller dispersion function and stronger sextupoles
are needed in order to correct the chromaticity. In the same
time, as is well known, the sextupoles dramatically de-
crease the dynamic aperture due to their nonlinear action.
To avoid the influence of sextupoles on the dynamic aper-
ture the multi-family sextupole schemes are used. But, un-
fortunately, all of them do not give complete compensation.
In particular, for third generation synchrotron light sources
the residual sextupole component becomes the stronger
factor in comparison with errors and misalignments and
this factor limits the dynamic aperture. Thus, the search
of new solutions to decrease the influence of the sextupoles
has remained to be actual. But let us ask ourselves, if we
can not suppress effectively the influence of sextupoles,
may be we should properly use the non-linearity of sex-
tupole to stabilize motion? Such an instrument can be the
non-linear tune shifts. Obviously, to realize this idea we
should step aside from the classic ring structure, since it
does not permit us to control the sign and the magnitude of
tune shift independently on the tunes themselves. We pro-
pose a lattice consisting of many arcs containing combined
function (or usual) magnets and focusing (and defocusing)
quadrupoles separated by identical optical channels con-
sisting of either one, two or more dispersionless straight
sections[1]. A significant advantage of such a design is the
ability to separate the functions of the arcs and the straight
sections. The periodical part of the arcs is a pseudo-second
order achromat joined with the straight sections through a
dispersion suppressor and it differs from the second order
achromat[2] by non-zero chromaticity. The lattice has one
focusing and one defocusing family of sextupoles located
on the periodical part of the arc. Varying the chromatic-
ity of arcs by sextupoles and the chromaticity of straight
sections by quadrupoles and keeping the total chromaticity
equal zero, we can modify the tune shift at any working
point.

2 SEXTUPOLE RESONANCES WITH
NONLINEAR TUNE SHIFTS

In the proposed lattice the highest multipole is a sextupole.
The resonance arises under the conditionq+kx�x+ky�y =
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. Already in the first order of the reso-

nance theoryN = 1 the sextupole excites four resonances
fkx; kyg = f1; 0; 3; 0; 1;�2g. The number of resonances
and their order grow with the the orderN as 2N+1. In
action-angle variables the averaging Hamiltonian of the
motion can be written as:
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where the Fourier harmonichkx;ky;q determines the effec-
tive strength of the resonancekx�x + ky�y = q under the
detuning�. It is proportional to the integral
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is the phase advance. Several for-
malisms of the perturbation theory up to the second or-
der [3, 4] have been used to derive the expression of the
tune shifts�x; �xy; �y of the sextupoles. They all are the
functions of the effective strength of the resonance and the

detuning:�x;xy;y = F

�
jhkx;ky;qj

2

kx�x+ky�y�q

�
. Thus, when we

compensate the influence of the sextupoles, the strength
of the resonance is suppressed proportionally to the first
power of hkx;ky;q, while the tune shifts are decreased

as
��hkx;ky ;q��2.

2.1 Lattice classification

Let us consider the case of a third integer resonance in one
plane. In the Hamiltonian system, where the friction force
is absent, there are two types of fixed points. The fixed
point Ix; 'x is the saddle, if the roots of the characteristic
equation are real and it is the centre, when the roots are
imaginary. The point itself is derived from the equations

�+
3

2
h
30q

I
1=2
x cos 3'x + 2�xIx + �x;yIy = 0 (3)

sin 3'x = 0:

The last gives us plenty of combinations with the fixed
points depending on the ratio between the parameters�,
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h30q , �x and �x;y. The influence of the non-linearity is
specified by the discriminantD in the expression:

I
1=2
x = �3h30q cos 3'x

8�x
� 1

4�x

r
9

4
h30q � 8�x (� + �x;yIy)

(4)
SubstitutingIx; 'x in the characteristic equation, we de-

fine what kind of fixed point it is.
From the lattice design point of view there are three in-

teresting cases:�x � h30q ; �x � h30q and�x � h30q .
The lattices with the small non-linearity�x � h30q are

classified among the first or second generation synchrotron
light sources. The system has one centre and three saddles.
Since the non-linearity is negligibly small, the dynamic

aperture is determined by the value ofIx �
�

2�

3h30q

�2
,

when the motion is still stable. Under the resonance condi-
tion� = 0 the centre is degenerated into the saddle and the
stable area shrinks into zero. In such a lattice the working
point is kept as far from the resonance as possible. Usu-
ally these lattices have a small value ofh30q because the
sextupoles are very weak and there is no problem with the
dynamic aperture.

The lattices with�x � h30q have the moderate non-
linearity. In common case the system has four islands with
four centres and three saddles. Such a lattice is used for
the second and third synchrotron light sources, where the
sextupoles have much stronger gradient in comparison with
previous generation. To compensate sextupoles the multi-
families sextupoles schemes are used. Since the tune shifts
are proportional to

��hkx;ky;q��2 and the working points are
chosen far away from integer tune, the non-linearity are
decreased even faster than the third harmonic. Really the
dynamic aperture is determined by how successful we have
been in simultaneous adjustment of the appropriate value
of �x andh30q .

The lattices with�x � h30q have to be classified as a
special lattice, since it is a case, when the value ofh30q is
effectively suppressed, but the non-linearity remain to be
under control and strong. It is obvious from (4), if the sign
of the detuning� coincides with the sign of the tune shift
�x, the discriminant is negative and the system has only one
centre atIx = 0 . Therefore this case corresponds to the
maximum stable region and the lattice with these features is
the most hopeful for the third and fourth generation source.

2.2 Nekhoroshev’s criterium

So, in order to get the maximum stable region the sign
of the non-linearity�x has to be the same as the detun-
ing �. However, we can see from (4), if�xy has the
opposite sign with the tune�, then under some ampli-
tude of oscillation in the vertical planeIy the total de-
tuning �total = � + �x;yIy can make the discrimi-
nant D � 0. It means that the two dimensional vec-
tor remains to be on the resonant surface. In other
words the non-linear system is unable to leave the res-

onance at all and it behaves as quasi-isochronous sys-
tem. The phenomena of quasi-isochronism for the non-
linear resonances was investigated by Nekhoroshev [5].
Let us apply Nekhoroshev’ criterium to our two dimen-
sional system. The non-resonant part of the Hamiltonian
is �H (Ix; Iy) = �xI

2
x+�xyIxIy+�yI

2
y . The vector of fre-

quencies passing through the point of the resonant surface
Ir =

�
Irx; I

r
y

�
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The quasi-isochronism condition by Nekhoroshev is ful-
filled, whenkx
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0 and �xk
2
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2
y = 0. The solution is

kx
ky

=
��xy�

p
�2
xy
�4�x�y

2�x
. If the non-linearity in both planes

have the same sign and4�x�y � �2xy we get the absolutely
convex (or concave) surface. They both have name of the
steep surface. Thus, the maximum stable region is when all
�x; �y ; �xy have the same sign.

3 THE LATTICES WITH �X � H30Q

What kind of lattice is needed in order to have a possi-
bility to adjust the detuning�, the nonlinear tune shift
�x; �xy; �y and the effective sextupole harmonichkx;ky;q
separately. From our point of view the only appropriate
lattice is the lattice with the separated functions of the arcs
and the straight sections. Such a lattice has some number of
superperiods consisting of the arc and the straight sections.
Each arc includes eight periodical cells, containing com-
bined function (or usual) bend magnets and focusing (and
defocusing) quadrupoles. The tune of the arcs in the hori-
zontal and the vertical planes is integer,�x = 3, �y = 2.

The sextupoles are placed on arcs periodically . To a first
approximation in this conditionhkx;ky ;q ! 0 (see eq.2),
since eachn�th sextupole is compensated by(n+ 4)�th
in the horizontal and by(n+ 2)� th in the vertical planes
correspondingly. However, since again the tune is integer,
the nonlinear tune shift can be varied in a wide region, since��hkx;ky;q��2 ! 0 andkx�x+ ky�y� q ! 0 simultaneously.
The total chromaticity of whole ring is adjusted to zero, but
the arc itself has a positive chromaticity, compensated by
the negative chromaticity of the straight section. Changing
the chromaticity of the arc, we can adjust the required sign
and value of the non-linear tune shifts. The working point
and the detuning� of whole ring is modified by the tune of
the straight section, while the arc remain to be invariable.

Figure 1 shows the dynamic aperture tracking of
ASTRID 2[1] versus the tune in the vicinity of the third
integer resonance�x = 9:33, when the tune shift�x =
100, the effective harmonich30q = 0:1 and the detuning
equals to -0.02; -0.01 and 0.01 correspondingly. During
small change of the detuning the system runs through three
stages, what is exactly in accordance with the Hamiltonian
described above. In the early stage the system has four sep-
arated islands with four centres and three saddles. In the
middle stage all four islands are surrounded by the stable
trajectories. After change of the detuning sign the system
has one fixed point. In case of a negative tune shift the
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Figure 1: Dynamic aperture versus the detuning(� =
�0:02;�0:01; 0:01).

first and last stages are exchanged with each other. Moving
away from the resonance�x = 9:33, the system appears in
the vicinity of the next resonance�x = 10:0. Figure 2 (up-
per picture) shows the dynamic aperture in the middle of
way between two resonances, when they compensate each
other, and the triangular shape transforms into the oval. Ap-
proaching to the resonance�x = 10:0 , the dynamic aper-
ture becomes similar to the starting point (lower picture,
fig.2). The behavior of the dynamic aperture has the peri-
odic character. The working point is chosen slightly higher
or lower than the resonance�x = 9:33 under positive or
negative tune shift correspondingly.
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Figure 2: Dynamic aperture versus the tune(� = 9:65 and
9:98).

3.1 CONCLUSION

The emittance in this lattice is much smaller, than in a cir-
cular machine with the same number of magnets, and the
dynamic aperture has a similar value with a lower sensitiv-
ity to third order resonances.

The author is very grateful to E.Uggerhoj, S.P.Moller for
fruitful discussion and to N.Golubeva, S.Volin for cooper-
ation in investigations of the proposed lattice[6].
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